• Revista PROGRAMAR: Já está disponível a edição #53 da revista programar. Faz já o download aqui!

Tharis

[Problema] Degraus e Escadas

7 mensagens neste tópico

Este é daqueles problemas tipo quebra-cabeças. Não fui eu que o criei, nem sei quem o criou... Senso popular, penso eu de que... Retirei-o do fórum Quark!.

O objectivo é descobrir a altura, em degraus, de uma escada rolante. Ou seja, quantos degraus seriam visíveis caso ela estivesse parada.

Para isso, dois amigos decidem subir a escada. Um sobe um degrau de cada vez e o outro sobe dois degraus de cada vez (sabendo que têm a mesma cadência de passo) e contam os degraus enquanto sobem.

No final, um contou 27 e o outro contou 36 e assim, conseguiram descobrir quantos degraus de altura tinha a escada.

Será que também consegues descobrir?

E para os fortes, que conseguem subir 3 degraus de cada vez!

Um amigo sobe dois de cada vez e o outro três. No final, um contou 924 e o outro 990 (eu disse que eram fortes ;))

Quantos degraus tinha a escada?

Prémios:

Nada - Acertar no caso simples ( [1,27] , [2,36] )

Rien - Acertar no caso maior ( [2,924] , [3,990] )

Zero - Encontrar a solução geral

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

epá não é por nada... mas eu não consegui perceber nem os dados da 1ª, nem os dados da segunda questão.

sou só eu, ou é aquilo mesmo que está mal explicado? :S

EDIT: e além disto, um contou 27 e o outro contou 36 o segundo gajo, contou 36 quê? 36 pares (visto que estava a subir de dois em dois) ou 36 ao todo?

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

Se ambos têm a mesma cadência de passo, como é que o que sobe 2 de cada vez conta mais degraus? Era suposto contar menos, já que sobe mais depressa...

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

@Cocolin, tu queres descobrir quantos degraus tem uma escada rolante. Para isso, tu e outro amigo teu vão subi-la. Só que tu vais de 2 em 2 e o teu amigo de 1 em 1. Um conta 27 e o outro conta 36, ambos DEGRAUS. O que vai de 2 em 2, de cada vez que sobe 2 degraus, conta os 2 degraus.

@Saco, cadência de passo significa que no mesmo período de tempo um sobe 2 e o outro sobe 1. Porque o que sobe de 2 em 2, podia subir esses 2 de uma só vez num período de tempo que pudesse dar ao outro (que subia de 1 em 1) para subir os mesmos 2 degraus só que 1 a 1.

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

Ok, aqui vai:

Seja:

v1 a velocidade da pessoa 1, dada em degraus/tempo_passo

n1 o número de passos dados

t1 o tempo que demorou a efectuar isso

Sejam v2, n2 e t2 os correspondentes para a pessoa 2

Seja v a velocidade da escada rolante em degraus/tempo_passo e h a altura da escada em degraus

t1 = n1 / v1

t2 = n2 / v2

Por outro lado, h = (x1 + v) * t1 = (x2 + v) * t2.

Resolvendo a equação, temos que v = (t2*x2 - t1*x1)/(t1-t2)

Para estes casos concretos:

1º:

n1 = 27; n2 = 36; x1 = 1; x2 = 2

t1 = 27

t2 = 18

v = 1

h = (x1 + v) * t1 = (1+1)*27 = 54 degraus

-------------------

2:

n1 = 924; n2 = 990; x1 = 2; x2 = 3

t1 = 462

t2 = 330

v = 0.5

h = (x1 + v) * t1 = (2+0.5)*462 = 1155 degraus

Happy?

Tharis, agora quero os meus Nada, Rien e Zero

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

@edsousa, era isso mesmo! :confused:;)

* tharis20 sends edsousa a bunch of Nada, Rien and Zero

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

Antes que venha alguém implicar, eu sei, digo que v1 e v2 são as velocidades das pessoas e depois uso x1 e x2 para esses efeitos. Mas não me apetece ir corrigir.

0

Partilhar esta mensagem


Link para a mensagem
Partilhar noutros sites

Crie uma conta ou ligue-se para comentar

Só membros podem comentar

Criar nova conta

Registe para ter uma conta na nossa comunidade. É fácil!


Registar nova conta

Entra

Já tem conta? Inicie sessão aqui.


Entrar Agora